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Abstract 

Lukács and András posed the problem of showing the existence of a 
set of n − 2 points in the interior of a convex n-gon so that the interior 
of every triangle determined by three vertices of the polygon contains a 
unique point of S. Such sets have been called pebble sets by De Loera, 
Peterson, and Su. We seek to characterize all such sets for any given 
convex polygon in the plane. 

We first consider a certain class of pebble sets, called peripheral be-
cause they consist of points that lie close to the boundary of the poly-
gon. We characterize all peripheral pebble sets, and show that for regular 
polygons, these are the only ones. Though we demonstrate examples of 
polygons where there are other pebble sets, we nevertheless provide a char-
acterization of the kinds of points that can be involved in non-peripheral 
pebble sets. We furthermore describe algorithms to find such points. 

Introduction 

Lukács and András posed the following in [?]: Prove that there exists a set S of 
n − 2 points in the interior of a convex n-gon such that for any three vertices of 
the n-gon, the interior of the triangle determined by the three vertices contains 
exactly one element of S. Many solutions to this problem were given, one of 
which was published in [?]. In [?], De Loera, Peterson, and Su employ analogous 
sets in d-dimensional polytopes to prove a generalization of Sperner’s Lemma. 
Following the terminology in [?], we will call a solution to the question posed 
in [?] a pebble set . 

In this paper, we consider the problem of characterizing all pebble sets in a 
given convex n-gon. We begin by characterizing a certain class of pebble sets, 
which we call peripheral, since the points are near the boundary of the polygon. 
For some kinds of polygons, such as regular polygons, these are in fact the only 
pebble sets, but for other kinds of polygons, there are others. If we take a 
certain natural notion of equivalence of pebble sets, then this provides a lower 
bound to the number of pebble sets as a function of n. 

In some cases, there may be pebble sets that are not peripheral, and we study 
necessary and suÿcient conditions for such to exist. We also give a construction 
for analyzing polygons in which such pebble sets exist, breaking any such set 
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down into pebble sets in smaller polygons. This allows us to characterize pebble 
sets for many polygons. 

We begin in Section ?? with a more precise statement of the problem and 
some preliminary remarks about pebble sets. This section also contains termi-
nology and notation that will be used throughout. 

Section ?? introduces a construction that provides peripheral pebble sets, 
and proves that all peripheral pebble sets are of this type. Section ?? deals with 
non-peripheral pebble sets, giving a necessary and suÿcient condition for such 
to exist. Here we also prove that there are no such pebble sets when the polygon 
is regular. In Section ??, we provide an eÿcient algorithm for determining if this 
condition is satisfied. Finally, in Section ??, we consider questions for further 
research. 

Preliminaries 

In this paper all polygons are assumed to be convex. In general, we will label 
the vertices and edges of an n-gon in the counterclockwise direction with the 
sequence hv0, e0, . . . , vn−1, en−1i. We consider the subscripts for the vertices 
and edges as integers modulo n, so that for instance vn = v0 and en = e0. 

We will say that three vertices are consecutive if they are of the form vk, 
vk+1, vk+2, and that two vertices are adjacent if they are of the form vk and 
vk+1. A vertex is incident with an edge if it is an endpoint of the edge. Two 
edges are incident if they are of the form ek and ek+1. By a chord of a polygon, 
we mean the segment joining two non-adjacent vertices of the polygon. 

Definition 1 A pebble set S in a convex n-gon P in the plane is a set of n −2 
points in the interior of P so that every triangle determined by vertices of P 
contains exactly one point of S in its interior. 

First we note the following. 

Proposition 1 If S is a pebble set in an n-gon P , then no point in S lies on a 
chord of P . 

Proof. Let p be a point on a chord f in P , and consider a triangulation of P that 
includes f . This triangulation contains n − 2 triangles with pairwise disjoint 
interiors. Thus no pebble set can contain p. � 

By a chamber of a polygon, we mean a maximal connected subset of the 
polygon that does not intersect any edges or chords of the polygon. We will say 
that two subsets of the polygon are equivalent if the sets of chambers containing 
points in the subsets are identical. Clearly if S is a pebble set that contains a 
point p in a chamber C, and if q is any point in C, then [S − {p}] [ {q} is also 
a pebble set. Therefore the property of being a pebble set depends only on the 
equivalence class. 
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With a slight abuse of notation, we will refer to an entire equivalence class 
of pebble sets as a pebble set, and note that we could construct pebble sets by 
merely specifying an appropriate set of chambers. 

For convenience, when we refer to a triangle as a subset of the plane, we ac-
tually mean the interior of the triangle, since points in a pebble set by definition 
lie in the interiors of the triangles. 

If u, v and w are distinct vertices in a polygon, we will refer to the triangle 
they form as 4uvw. We will refer to the triangle formed by an edge or chord e 
and vertex v as 4ev, and the triangle formed by two incident edges or chords e 
and f as 4ef . 

If vk−1, vk, vk+1 are consecutive vertices, then we call 4vk−1vkvk+1 a border 
triangle, and we will refer to this triangle as the border triangle at vk. We call 
the union of the border triangles the periphery of the polygon. The complement 
of the periphery in the polygon will be called the core of the polygon. 

Since there are n border triangles, then the fact that a pebble set contains 
n − 2 points necessitates that at least two points in a pebble set will lie in the 
intersection of two overlapping border triangles. We will say that such a point 
lies close to an edge of the polygon. If a pebble set contains precisely two points 
that are close to an edge of the polygon, then the remaining points in the pebble 
set must be distributed among the remaining border triangles in a one-to-one 
correspondence, revealing that all points in the pebble set lie in the periphery. 
More generally, the pigeonhole property leads us to the following observation. 

Proposition 2 If a pebble set in an n-gon contains k � 2 points that are close 
to an edge of the polygon, then there are precisely k − 2 points in the pebble set 
that lie in the core. 

The following will be helpful in showing that a set of points is a pebble set. 

Lemma 3 Suppose S is a set of n − 2 points in an n-gon P , none of which lies 
on a chord. Let T be the set of triangles in P of the form 4ev, where e is an 
edge and v a vertex of P . If every triangle in T contains at most one point of 
S, then S is a pebble set. 

Proof. First we show that every triangle in T contains precisely one point of 
S. Let T 2 T . Then there exist an edge e and a vertex v such that T = 4ev. 
Triangulate P with all chords from v. Every triangle in this triangulation is in 
T , and thus contains at most one point of S. Since there are n − 2 triangles in 
this triangulation, and since no point of S lies on a chord of P , we have that T 
contains exactly one point of S. 

Now we show that S is a pebble set. Let T be any triangle determined by 
three vertices of P . If T 2 T , then T contains precisely one point of S. So 
suppose T 2/ T . Then T = 4vivj vk, where no two of {vi, vj , vk} are adjacent. 
Assume that 0 � i < j < k � n − 1. Working counterclockwise, triangulate P 
with chords from vi to all vertices vi+2 to vj , chords from vj to all vertices vj+2 to 
vk, and chords from vk to all vertices vk+2 to vi. Every triangle except 4vivj vk 

in this triangulation contains precisely one edge of P , and therefore contains 
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Figure 1: Shaded region is the fan of edge e. 

precisely one point of S. Since there are n − 3 triangles in the triangulation 
other than 4vivj vk, and since no point of S lies on a chord of P , there must be 
precisely one point of S in 4vivjvk. � 

Definition 2 For a given edge e of a polygon, the union of all triangles of the 
form 4ev across all vertices v of P is called the fan of e. (See Figure ??.) 

Lemma ?? implies that it is only necessary to check that the triangles in the 
fans of the edges of a polygon contain at most one point of a set S to determine 
if S is a pebble set. 

Characterizing Peripheral Pebble Sets 

We say that a pebble set is peripheral provided all points in the pebble set lie 
in the peripery. We present a construction whereby all peripheral pebble sets 
of an n-gon can be obtained. 

Construction 1 Given any subset of W = {1, 2, . . . , n−4}, we may determine 
a unique pebble set that contains a point close to edge v0vn−1 in the following 
way. 

First let A be a subset of W , and suppose A has k elements. (See Figure ??.) 
Let B = W −A, so that B has m = n − 4 − k elements. We begin by relabeling 
some of the vertices and edges of P for convenience. For 0 � i � m + 1, we 
let wi = vn−1−i. Label edges fi = wiwi+1 for 0 � i � m. For 0 � i � k, let 
Ti denote the border triangle at vi, and for 0 � i � m, let Ui denote the border 
triangle at wi. 

Note that each Ti is divided into n − 2 chambers by the chords emanating 
from vi. We label these chambers Ci,j (0 � j � n − 3) in the following way. 
For 0 � i � k, we let Ci,0 be the chamber close to ei−1, labeling consecutively 
up to Ci,n−3, the chamber close to ei. Similarly for the Ui (0 � i � n − 3), we 
let Di,0 be the chamber of Ui close to fi−1, labeling up to Di,n−3, the chamber 
close to fi. 

To construct a pebble set, begin by letting p0 be a point in the chamber close 
to v0w0, and pn−3 a point in the chamber close to vk+1wm+1. Writing the 
elements of A as a1 < a2 < · · · < ak, let pi be a point in each Ci,ai . Similarly, 

Figure 2: A periphery pebble set for an 11-gon where A = {1, 2, 4, 6}. 
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Figure 3: Deletion of v0 from P in the proof of Theorem ??. 

writing the elements of B as b1 < b2 < · · · < bm, let pi+k be a point in each 
Di,bi . Let S = {p0, . . . , pn−3}. 

Theorem 4 Let P be an n-gon (n � 4) and e an edge of P . Then the con-
struction described above determines a one-to-one correspondence between the 
peripheral pebble sets containing a point close to the edge v0w0 and the power 
set of {1, 2, . . . , n − 4} (n � 4). 

Proof. We use induction to show that S as constructed above is a pebble set. 
If n = 4, then A = B = ;. Thus S consists of a point close to edge v0w0 and 
a point close to v1w1, which is clearly a pebble set. So suppose n � 5 and that 

i 

this construction produces a pebble set for a polygon on fewer than n vertices. 
Note that we may assume that 1 2 A. For otherwise, an argument similar to 
the one to follow can be applied to B. 

0First we let n = n − 1 and create an n0-gon, which we will denote P 0 , by 
deleting v0 and all chords of P emanating from it, then including the segment 
w0v1 as an edge of P 0 . (See Figure ?? for an example.) We show that S0 = 
S − {p0} is precisely the same construction in P 0 as the above construction is 
for P . To demonstrate this, we relabel some of the vertices, border triangles, 
and chambers of P 0 , as well as the points in S0 to reveal a subset A0 of W 0 = 
{1, 2, . . . , n0 − 4} that has k0 = k − 1 elements, a set B0 = W 0 − A0 , and a 
selection of points in the chambers of the border triangles of P 0 analogous to 
that for P . 

0 0For 0 � i � k0 + 1, let vi = vi+1 and ei = ei+1. For 1 � i � n0 − 3, let 
0 0 0p = pi+1. First note that S0 contains p = p1, which is close to edge v0w0,i 0 

0 0and it contains pn0−3 = pn−3, which is close to vk0 +1wm+1. Label the border 
0triangles at the vi as Ti 

0 , and note that Ti0 = Ti+1. Label the chambers of 
T 0 0as C 0 as before, where C 0 is the chamber in T 0 close to ei−1, labeling i i,j i,0 i 

0consecutively up to Ci,n0−3, the chamber of T 0 close to e With this labeling, i i. 
we have that C 0 = Ci+1,j+1 for i � j � n0 − 3. Let A0 = {a − 1 : a 2 A, a 6= 1}i,j 

0 k0and label the elements of A0 as ai = ai+1 − 1 for 1 � i � . Note that A0 is a 
subset of W 0 = {1, 2, . . . , n0 − 4} that contains k0 elements. Furthermore, since 

0 0ai � i, we have that ai � i. Also, C 0 = Ci+1,a +1 = Ci+1,ai+1 , so that C 0 
i,a0 i,a0 

i 

i 

0contains pi = pi+1. 
In a somewhat similar fashion, we relabel the chambers in P 0 of the border 

triangles at the wi (0 � i � m), where Di,0 is the chamber of Ui close to fi−1, 
up to Di,n0 −3, the chamber of Ui close to fi. With this relabeling, D0 

i,j = Di,j+1 

for i � j � n0 − 3. Let B0 = {b − 1 : b 2 B}, and label the elements of B0 as 
b0 = bi − 1 for 1 � i � m. Note that B0 = W 0 − A0 . Since 1 2 A, we have 

= Di,b0 
i 

Also, D0 
i,b0 

i 
, so that D0 

i,b0that bi � i for 1 � contains i � = Di,bi
m. +1 

pi+k0 = pi+k. 
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With this, we have that the removal of v0 from P leaves an n0-gon whose set 
of points S0 is of the same construction as that for P . We now show that S is 
a pebble set in P , for n � 5 by applying Lemma ??. 

Let e be any edge of P and v any vertex. We show 4ev contains precisely 
one point of S. If e / 6 . By 2 {v0w0, e0}, and v = v0, then 4ev is a triangle in P 0 

the inductive assumption, 4ev contains precisely one point of S0 , and therefore 
of S. 

Now suppose v = v0. If e = f0, then by the way S was constructed, 4ev 
contains the unique point p0. Also, if e = vk+1wm+1, then 4ev contains the 
unique point pn−3. If e = ei for some 1 � i � k, then 4ev \ Ti contains all 
chambers Ci,j for i − 1 � j � n − 3. Since ai � i, 4ev contains pi. Also, 
4ev \ Ti+1 contains the chambers Ci+1,j for 0 � j � i − 1. Since ai+1 � i + 1, 
pi+1 does not lie in 4ev. 

Reasoning in a similar fashion, if 1 � i � m and e = fi, then 4ev \ Ui 

contains chambers Di,i to Di,n−3, and 4ev \ Ui+1 contains chambers Di+1,0 

to Di+1,i. Since bi � i, Si,bi is one of the chambers in 4ev, and thus 4ev 
contains pi+k. Furthermore, 4ev does not contain Di+1,bi+1 , so that 4ev does 
not contain pi+k+1. 

Finally, suppose e 2 {v0w0, e0}. We may assume v /2 {v0, v1, w0}, for other-
wise 4ev contains p0. By the inductive assumption, 4v1w0v contains precisely 
one point of S0 . In particular, 4v1w0v contains p1, and no other points of S0 . 
By the way S was constructed, if e = v0w0, then 4ev contains p0. Furthermore, 
since 4v1w0v contains only p1, there are no other points of S in 4ev. On the 
other hand, if e = e0, then 4ev contains p1. Since 4v1w0v contains no other 
points of S, then neither does 4ev. 

Thus every triangle of the form 4ev contains precisely one point of S. By 
Lemma ??, S is a pebble set. 

Now we show that all peripheral pebble sets are derivable from the construc-
tion described above. Let S be any pebble set, all of whose points lie in the 
periphery of P . Suppose the vertices of P are labeled so that S contains a point 
p0 close to en−1. Since all points of S lie in the periphery, there exists precisely 
one other point pn−3 close to some other edge of P . Relabel vertices, edges, 
border triangles, and chambers of the border triangles as was done above, so 
that p0 is close to edge v0w0, and pn−3 is close to vk+1wm+1 for the appropriate 
k and m such that k + m = n − 4. Since each border triangle contains precisely 
one point of S, we may let A be the set of all positive integers ai for which S 
contains a point in Ci,ai (1 � i � k), and B the set of all positive integers for 
which S contains a point in Di,bi (1 � i � m). We show that A is a uniquely 
determined subset of W = {1, 2, . . . , n − 4}, and that B = W −A. 

Since p0 lies close to v0w0, no other points of S can lie in T0 or U0. But 
since 4e0w1 and 4f0v1 must contain precisely one point of S, then there exists 
a unique point p1 2 S in either C1,1 or D1,1. Thus either a1 = 1 2 A or 
b1 = 1 2 B, but not both. 

Now suppose that s � 1 and that for 1 � t � s, either t 2 A or t 2 B, but 
not both. We may assume that s 2 A, for a similar argument would work in 
the event s 2 B. Let i be the number of elements in A \ {1, 2, . . . , s}, so that 
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Figure 4: Example of a non-peripheral pebble set in a hexagon. 

ai = s. Let j be the number of elements in B \ {1, 2, . . . , s}, and let ps be the 
point of S that lies in Ci,ai . 

Notice that for 1 � h � n − 2, 4eivi−h (where i − h is taken modulo n) 
when intersected with Ti, yields all chambers Ci,h−1 to Ci,n−3. Since wj = 
vn−1−i = vi−(i+j+1−n), we may let h = i + j + 1 to have that 4eiwj intersects 
Ti to yield the chambers from Ci,i+j = Ci,s to Ci,n−3. Thus ps is the unique 
point of S in 4eiwj . Similarly, 4ei+1wj intersects Ti+1 to yield Ci+1,0 through 
Ci+1,i+j+1. Thus 4eiwj intersects Ti+1 to yield Ci+1,0 through Ci+1,i+j . Thus 
in Ti+1 there are no points of S in any of the Ci+1,h for 0 � h � i + j. But 
4eivj+1 contains a point of S. Thus there must exist a point ps+1 either in 
Ci+1,i+j+1 or in Dj+1,i+j+1, but not both. Since i + j = s, there exists a point 
of S in either Ci+1,s+1 or Dj+1,s+1. If ps+1 2 Ci+1,s+1, then s + 1 2 A, and we 
may write ai+1 = s + 1. On the other hand, if ps+1 2 Dj+1,s+1, then s +1 2 B, 
and we may write bj+1 = s + 1. 

By induction (1 � s � n − 4), A and B are uniquely determined. � 

If n = 3, then an n-gon has a unique pebble set. If n � 4, then the power 
set of {1, 2, . . . , n − 4} contains 2n−4 elements. Thus we have the following. 

Corollary 5 Let P be a convex n-gon, and e an edge of P . Let d(P ) = 1 if 
n = 3, and d(P ) = 0 otherwise. Then the number of peripheral pebble sets in P 
that contain a point close to e is 2n−4+d(P ). 

If n � 4, we may sum the numbers of pebble sets from Corollary ?? across 
all edges of an n-gon. Since a peripheral pebble set contains precisely two points 
close to an edge, we count each pebble set exactly twice. Thus we arrive at the 
following. 

Corollary 6 If P is an n-gon (n � 4), then the number of peripheral pebble 
sets is n2n−5 . 

Characterizing Non-Peripheral Pebble Sets 

For a given n-gon, pebble sets other than peripheral pebble sets might exist. 
In this section, we want to characterize chambers for which a pebble set exists 
that contains a point in the chamber. An important example of such a chamber 
lies in the hexagon in Figure ??. 

In any hexagon H, the chords f1 = v0v3, f2 = v1v4, and f3 = v2v5 intersect 
pairwise. If these three points of intersection are distinct, they determine a 
triangular region R in H. For any given border triangle T , none of these three 
points lies in T , so that R lies in the core of H. Furthermore, all chords of H 
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other than {f1, f2, f3} are boundary segments of the border triangles, and thus 
do not intersect the core of H. Therefore, R is a triangular chamber in the core 
of H. 

4.1 Edge supports and viability 

Definition 3 We say that a chamber is viable if there exists a pebble set con-
taining a point in the chamber. 

By Theorem ??, we see that every chamber in the periphery of a polygon is 
viable. 

Definition 4 Given a chamber C of a polygon P , the edge support of C, written 
ES(C), is the set of edges e of P for which C is contained in the fan of e. 

As an example, note that in Figure ??, the edge support of the triangular cham-
ber in the core is {e0, e2, e4}. By the support size of C, we mean the cardinality 
of ES(C), which we denote |ES(C)|. A major result of this section is that a 
chamber C is viable if and only if |ES(C)| = 3 (Theorem ?? and Corollary ??). 
Along the way, we note other necessary conditions of viability that are help-
ful in practice. In particular, if the edge support of a viable chamber contains 
two incident edges, the chamber must lie in the periphery (Proposition ??). In 
addition, the only pebble sets in a regular polygon are peripheral (Theorem ??). 

Proposition 7 If C is a chamber in a polygon and vk is any vertex, then there 
exists a unique edge ej (j /2 {k − 1, k}) such that C is contained in 4ejvk. 

Proof. The chords of the polygon emanating from vk form a triangulation of 
the polygon. Thus C must lie within precisely one of these triangles, which are 
of the form 4ej vk, where j / �2 {k − 1, k}. 

Proposition 8 If C is a chamber in the periphery of a polygon, then |ES(C)| = 
3, and at least two edges of ES(C) are incident. 

Proof. Suppose C is in the periphery. Then it is contained in the border triangle 
at some vk, so that ek−1, ek 2 ES(C). Applying Proposition ?? to vk, we see 
that there is an additional edge in ej 2 ES(C). Now any triangle containing C 
must include vk as a vertex. Since ej is the unique edge such that C is contained 
in 4ejvk, there are no other edges in ES(C). � 

For convenience in the next proof, we will say that a vertex vj is between ver-
tices vi and vk if the counterclockwise ordering of the three vertices is hvi, vj , vki. 

Proposition 9 Suppose vk, vk+1, vj and vj+1 are distinct vertices in a polygon, 
and that C is a chamber in 4ej vk. Let vi be a vertex between vk and vj , and 
suppose also that C lies in 4ejvi. Then C is not in the fan of ek. (See Figure ?? 
for an illustration.) 
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Figure 5: A possible chamber from Proposition ??. 

Proof. Let vm be any vertex (m /2 {k, k +1}). We show that C is not in 4ekvm 

to have that C is not in the fan of ek. If vm is between vk+1 and vj+1, then we 
may triangulate the polygon by including the chord from vk+1 to vm, all chords 
from vk+1 to the vertices between vk+1 and vm, the chord from vk to vm, and 
all chords from vk to the remaining vertices. This triangulation contains 4ekvm 

and 4ej vk, and are therefore disjoint. Since C is contained in 4ej vk it is not 
in 4ekvm. 

If vm is between vj and vk, triangulate the polygon by including chords 
from vi to all vertices between vi and vm, and chords from vm to all remaining 
vertices. This triangulation contains 4ej vi and 4ekvm. Since C is in 4ej vi it 
is not in 4ekvm. 

In either case, C is not contained in 4ekvm. Since this is true for all m, we 
have that C is not in the fan of ek. � 

To characterize viable chambers in the core of a polygon, we will need to 
relate a given n-gon to an (n − 1)-gon formed by removing a vertex, as in the 
proof of Theorem ??. 

Let vk be a vertex in an n-gon P , and let C be a chamber of P not in the 
border triangle at vk. Let P 0 be the (n − 1)-gon formed by deleting vk and 
including the edge vk−1vk+1, and let C 0 be the chamber of P 0 that contains 
C. Since chambers do not intersect any chord in a polygon, we may make the 
following observation. 

Proposition 10 Suppose T is a triangle determined by three vertices of P 0 , 
and suppose T contains C. Then T also contains C 0 . 

Proposition ?? allows us to show that an edge e is in ES(C 0) by showing 
merely that C is contained in 4ev for some vertex v in P 0 . The following 
proposition relates the edge support of a chamber in P to the edge support of 
the chamber that contains it in P 0 . 

Proposition 11 Let vk be a vertex in an n-gon P , let C be a chamber of P 
not in the border triangle at vk, and let C have edge support ES(C). Let P 0 be 
the (n − 1)-gon formed by deleting vk and including the edge f = vk−1vk. Let 
C 0 be the chamber of P 0 that contains C, and let ES(C 0) be the edge support of 
C 0 in P 0 . Then the following are true: 

1. If neither ek−1 and ek is in ES(C), then ES(C 0) = ES(C). 

2. If precisely one of ek−1 and ek is in ES(C) (say ek), then ES(C 0) = 
[ES(C) − {ek}] [ {f}. 

3. If ek−1, ek 2 ES(C), then there exists an edge ej 2 ES(C) (j /2 {k − 1, k}) 
such that ES(C 0) = [ES(C) − {ek−1, ek, ej}] [ {f}. 
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Proof. We prove the result by showing the following. 

1. f 2 ES(C 0) if and only if ek−1 2 ES(C) or ek 2 ES(C). 

2. For every other edge ej in P 0 (so that j /2 {k − 1, k}), the following hold: 

(a) If ek−1 and ek are not both in ES(C), then ej 2 ES(C) if and only if 
ej 2 ES(C 0); and 

(b) If ek−1, ek 2 ES(C), and if (by Proposition ??) ej is the unique edge 
for which C is contained in 4ejvk, then ej 2 ES(C) − ES(C 0), and 
for every other edge ei (i 6= j), ei 2 ES(C 0) if and only if ei 2 ES(C). 

For claim 1, if f 2 ES(C 0), then there exists a vertex vj (j /2 {k−1, k, k+1}) 
such that C 0 is contained in 4fvj . This triangle is itself contained in the union 
of 4ek−1vj and 4ekvj . Thus C is contained in one of these triangles, so that 
either ek−1 or ek is in ES(C). Conversely, if either ek−1 or ek is in ES(C), then 
we may consider that ek 2 ES(C) (the argument for ek−1 would be similar). 
Thus there exists a vertex vj (j /2 {k, k +1}) such that C is contained in 4ekvj . 
But j 6= k − 1 also, because C is not in the border triangle at vk. Thus C is 
contained in 4fvj . By Proposition ??, C 0 is also contained in 4fvj , so that 
f 2 ES(C 0). 

For claim 2a, suppose j 2/ {k − 1, k} and ek 2/ ES(C). (The arguments for 
the case of ek−1 2/ ES(C) would be similar to the ones to follow.) Suppose 
ej 2 ES(C) and that ej 2/ ES(C 0). Then there exists a vertex vi such that C 
is contained in 4ej vi. If i =6 k, then 4ejvi contains C, and therefore contains 
C 0 by Proposition ??. This contradicts the fact that ej 2/ ES(C 0). Therefore, 
vk is the only vertex such that C is contained in 4ej vk. Since ek 2/ ES(C), it is 
impossible that j = k + 1. Thus the edges ej and ek determine a quadrilateral 
in P , which is the union of triangles 4ekvj+1 and 4ejvk+1. Furthermore, C 
must lie in this quadrilateral, because it lies in 4ej vk. But C does not lie in 
4ekvj because ek 2/ ES(C). Also, C 0 does not lie in 4ejvk+1 by supposition, 
so that C does not lie in 4ej vk+1 either. This is a contradiction, so it must be 
that ej 2 ES(C 0). 

Conversely, suppose ej 2 ES(C 0). Then there exists vertex vi (i =6 k) such 
that C 0 is contained in 4ej vi. Since C � C 0 , C is also contained in 4ejvi, so 
that ej 2 ES(C). 

For claim 2b, suppose ek−1, ek 2 ES(C) and that ej is the unique edge such 
that C is contained in 4ejvk. Then clearly ej 2 ES(C), so we must show that 
ej 2/ ES(C 0). First suppose that j = k + 1. Then C is in the border triangle 
at vk+1. By Proposition ??, ES(C) = {ek−1, ek, ek+1}, and by Proposition ?? 
applied to vk+1, C must lie in the border triangle at vk. This is impossible, 
since C is assumed not to be in this border triangle. By similar reasoning, 
j 6= k − 2. Thus ek−1, ek and ej determine a pentagon in P , and we may apply 
Proposition ??. If C is contained in 4ejvi for some vertex vi between vk and vj , 
then C cannot be in the fan of ek. But ek 2 ES(C) by assumption. Reasoning 
similarly from Proposition ??, if C is contained in 4ejvi for some vi between 
vj+1 and vk+1, then C cannot be in the fan of ek−1. But ek−1 2 ES(C). Thus 
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for any i 6= k, C does not lie in 4ejvi, and neither is C 0 contained in 4ejvi. 
Therefore, ej 2/ ES(C 0). � 

Proposition ?? implies the following about the support size of C, and its 
relationship to the support size of C 0 . 

Corollary 12 Let C be a chamber in an n-gon P . Then |ES(C)| is odd and 
at least three. In fact, If vk is a vertex whose border triangle does not contain 
C, and C 0 is the chamber in the (n − 1)-gon created from P by deleting vk, 
then |ES(C)| = |ES(C 0)|+ 2 whenever ek−1, ek 2 ES(C). Otherwise, |ES(C)| = 
|ES(C 0)|. 

Proof. If n = 3 then |ES(C)| = 3. So suppose n � 4 and that the result is true for 
all polygons on fewer than n vertices. Now C cannot be in every border triangle. 
We may therefore remove some vertex vk whose border triangle does not contain 
C to create the n-gon P 0 with a chamber C 0 � C, where by the inductive 
assumption, |ES(C 0)| is odd and at least three. If ek−1, ek 2 ES(C), then by 
Proposition ??, |ES(C)| = |ES(C 0)|+ 2. Otherwise, |ES(C)| = |ES(C 0)|. � 

We will show that a support size of three is necessary and suÿcient for the 
viability of a chamber. First we show the following. 

Proposition 13 Suppose S is a pebble set in an n-gon P (n � 4), and v is any 
vertex of P . Let p be the point of S that lies in the border triangle at v, and let 
P 0 be the polygon formed from P by removing v. Then S − {p} is a pebble set 
in P 0 . 

Proof. If T is any triangle in P 0 , it is also a triangle in P . Thus T contains a 
unique point of S. Now every triangle that contains p includes v as a vertex, so 
that p is not the point of S that lies in T . Therefore, S − {p} is a pebble set 
in P 0 . � 

Corollary 14 Suppose C is a viable chamber in an n-gon (n � 4), and that C 
is not in the border triangle at vertex v. Then C 0 � C is viable in the (n−1)-gon 
created by removing v. 

4.2 Proof of necessity 

We are now ready to show that every viable chamber has support size three. In 
Section ?? we will prove the converse. In preparation for the proof of necessity, 
we first demonstrate another necessary condition for viability that has practical 
application. Proposition ?? implies that if a chamber lies in the core of a polygon 
and its edge support contains two incident edges, then it is not viable. 

Proposition 15 If C is a viable chamber and ES(C) contains two incident 
edges, then C is in the periphery. 
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Figure 6: A regular polygon from the proof of Theorem ??. 

Proof. Suppose C is viable and ES(C) contains ek and ek+1. Then there exist 
vertices vi, vj (i, j 6= k + 1) such that 4ekvi and 4ek+1vj contain C. Let T 
be the border triangle at vk+1. Now T consists of n − 2 chambers, which we 
label C0, ..., Cn−3, where C0 = T \ 4ek−1vk+1, and the others are numbered 
consecutively up to Cn−3 = T \4ek+2vk+1. 

By Proposition ??, there is an edge em so that 4emvk+1 contains C. Thus 
T \4emvk+1 is a single chamber, which we call Cm. By convexity, any triangle 
containing C and vk+1 must intersect (and therefore contain) Cm. 

Since the triangles 4ekvi and 4ek+1vj both contain C, they both con-
tain Cm. Now 4ek+1vj contains C0, so by convexity, it contains chambers C0 

through Cm. Similarly, 4ekvi contains Cm and Cn−3, and therefore, all the 
chambers Cm through Cn−3 . We can then conclude that 4ekvi [ 4ek+1vj 

contains T . 
Now since 4ekvi is a triangle, any pebble set containing a point in C cannot 

contain another point in �ekvi. Similarly for 4ek+1vj . Thus a pebble set 
containing a point in C can have no other point in T . But T is a triangle, and 
so the pebble set must have a point in it. Therefore C must be in T , and hence 
in the periphery. � 

An interesting implication of Proposition ?? is the following. 

Theorem 16 If P is a regular n-gon, then all pebble sets are peripheral. 

Proof. If n 2 {3, 4} then every chamber is in the periphery, so let n � 5, and let 
P be the regular polygon on n vertices. We show that every point in the polygon 
that does not lie on a chord is in a chamber whose edge support contains two 
incident edges. Let O be the center point of P . For a point x 6= O anywhere in 
P , define �(x) to be the counterclockwise angle between segments Ov0 and Ox 
(0 � � < 2ˇ). Let k = dn/2e. Then k is the smallest positive integer for which 
�(vk) � ˇ. 

Suppose p is any point in a viable chamber C of P . Since chambers are 
open and nonempty, we may assume p 6= O. By rotating the indices of P and 

2ˇ 3 2ˇexploiting reflective symmetries of P , we may assume that � �(p) � . n 2 n 
In other words, we may assume that p lies in a closed triangular B � P defined 
by O, v1, and the midpoint of e1. 

If p lies in 4e1v0, then it is in the periphery. So we may assume otherwise. 
By the way k was chosen, we may consider a triangulation of chords emanating 
from v0 and have that there is some ej (2 � j � k −1) such that p lies in 4ejv0. 
This triangle is a subset of the quadrilateral determined by e0 and ej . We show 
that p is in the fans of both e0 and e1. 

First we show that p is in the fan of e1. If n is odd, then 4e1vk+1 contains 
O, so that it contains all of B. Thus p lies in 4e1vk+1. If n is even, then chord 
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v1vk+1 passes through O. Since p does not lie on a chord of P , then p must lie 
in 4e1vk+1. In either case, p, and therefore all of C, lies in the fan of e1. 

Now we show that p is in the fan of e0. Suppose that p does not lie in either 
4e0vj or 4e0vj+1. Then it must lie in 4ej v1 \ 4ej v0. Now the chords v0vj 

and v1vj+1 intersect at a point q where �(q) is the average of �(v1) = 2ˇ/n and 
�(vj ) = 2jˇ/n. Thus �(q) = (j + 1)ˇ/n, so that �(p) > ˇ(j + 1)/n. But since 
j � 2, we have that �(p) � 3ˇ/n. This is a contradiction, so p must lie in either 
4e0vj or 4e0vj+1, Thus p, and therefore C, lies in the fan of e0. 

Therefore e0 and e1, which are incident edges, are in ES(C), and by Propo-
sition ??, we can conclude C is in the periphery. � 

Theorem ?? can actually be stated in a slightly stronger form. If P is 
an n-gon for which the intersections of the chords generates the same internal 
topology as the regular n-gon, then all pebble sets are peripheral. Given that 
we have characterized all peripheral pebble sets in general in Section ??, we 
therefore have solved the problem of characterizing all pebble sets for polygons 
whose internal topology is equivalent to that of a regular polygon. 

We are now ready to prove one direction of the viability question. 

Theorem 17 If C is a viable chamber in an n-gon, then |ES(C)| = 3. 

Proof. Suppose C is viable. If n = 3, the result it clear, so suppose n � 4, and 
that the result is true for all polygons on fewer than n vertices. If C is in the 
periphery, then |ES(C)| = 3 by Proposition ??. Thus we may assume C is in 
the core, so that ES(C) does not contain two incident edges, by Proposition ??. 
Let vk be a vertex for which ek−1 and ek are not both in ES(C). Remove vk to 
form the (n − 1)-gon as in Proposition ??. Since at least one of ek and ek−1 is 
not in ES(C), then by Corollary ??, |ES(C)| = |ES(C 0)|. By Corollary ??, C 0 is 
viable, so that by the inductive assumption, |ES(C 0)| = 3. Thus |ES(C)| = 3. � 

An important consequence of Theorem ?? is the following. 

Proposition 18 A chamber with support size three is triangular. 

Proof. Suppose |ES(C)| = 3. Since all chambers in the periphery are triangu-
lar, we assume C is in the core. We demonstrate a one-to-one correspondence 
between the chords that determine the boundary of C and the pairs of edges 
chosen from ES(C). Let vivj be a chord that determines part of the boundary 
of C. The line vi 

! vj cuts the plane into two half planes. We may assume that 
C lies in the half plane containing edges ei−1 and ej . Since C is a chamber, it 
lies in both 4ei−1vj and 4ej vi. Thus ei−1, ej 2 ES(C), and we have that every 
chord vivj of P determines a unique pair of edges in ES(C) that lie in the same 
half plane as C upon cutting the plane with vivj . 

Now let vsvt be a chord of P that determines part of the boundary of C. 
We show that the only way the above algorithm can yield ei−1 and ej is if 
vsvt = vivj . Since C lies in the core, there are four distinct chords incident with 
ei−1 and ej , defined by the four distinct endpoints of ei−1 and ej . Since the 
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Figure 7: A triangular chamber with support size three. 

chord vi−1vj cuts the plane so that ei−1 and ej lie in di�erent half planes, it 
is impossible that vsvt = vi−1vj . By similar reasoning vsvt 6= vivj+1. Further-
more, since C is a chamber, it is impossible that the chord vi−1vj+1 form part 
of the boundary of C, since vivj and vi−1vj+1 lie on opposite sides of vivj+1. 
Thus the only chord for which the above algorithm can determine ei−1 and ej 

is vivj . � 

4.3 Proof of suÿciency 

Now we address the converse of Theorem ?? by showing that if the support 
size of a chamber is three, then the chamber is viable. We will use the three 
edges in its edge support to demonstrate a construction that produces all pebble 
sets containing a point in the chamber. We begin by describing a construction 
whereby such a chamber can be used to determine three polygonal subsets of a 
given n-gon. 

Construction 2 Let C be a chamber in an n-gon P with support size three, 
and let the edges in ES(C) be labeled counterclockwise as e1, e2, and e3. By 
Proposition ??, C is triangular. (See Figure ??.) Label the three chords that 
define the boundary of C as f1, f2, and f3, where fi is incident with ej and ek 

(i, j, and k all distinct). Similarly, for 1 � i � 3, let Ei be the set of edges of 
P between ej and ek (i, j, and k all distinct). Note that some of the Ei might 
be empty. Let Q1 be the polygonal subset of P whose perimeter is defined by 
e3, f1, e2, and all edges in E1. Let Q2 and Q3 be analagously defined polygonal 
subsets of P . Finally, let p be any point in C. 

Since C is not in the fan (in P ) of any edge in E1, it is also not in the fan in 
Q1 of any edge in E1. Thus the edge support of C in Q1 is precisely {f1, e2, e3}, 
and p lies close to f1 in Q1. By Theorem ??, there exists a pebble set S1 in Q1 

that includes p. By similar reasoning, there exist pebble sets S2 and S3 in Q2 

and Q3, respectively, that include p. Let S = S1 [ S2 [ S3. 

We now show that S as described in Construction ?? is a pebble set in 
P that contains p, and that all pebble sets in P that contain p are uniquely 
described in this way. We construct a bijection between the set of all possible 
ordered triples (S1, S2, S3) of pebble sets in the Qi, where each Si contains p, 
and the set of all pebble sets in P that contain p. For a polygon P and a point 
p in a chamber of P , we write S(P, p) to mean the set of all pebble sets in 
P that contain the point p. Thus the construction we desire is a one-to-one 
correspondence between S(P, p) and �3 S(Qi, p).i=1 

Let P be a polygon and S 2 S(P, p). Define ˇ : S(P, p) ! �3 
i=1S(Qi, p) 

to map S to the ordered triple (S \ Q1, S \ Q2, S \ Q3). To show that ˇ is 
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a bijection, the following lemmas will be helpful. For convenience, we state 
them with specific reference to Q1, though analogous results clearly hold for Q2 

and Q3. 

Lemma 19 Let P be a polygon and C a chamber of P . Let Q1, E2 and E3 be 
defined as in Construction ??. Let S1 be a pebble set in Q1 that contains p, and 
let D be any chamber of Q1 that contains a point of S1 − {p}. Then no point 
in S1 − {p} lies in the fan of any edge of E2 [ E3 [ {e1}. 

Proof. Let q be any point in S1 − {p}, let e be any edge in E2 [E3 [ {e1}, and 
let v be any vertex of P . If v is not an endpoint of an edge in E1, then 4ev 
does not lie in Q1, so that q / So suppose v is an endpoint of an edge in 2 4ev. 
E1. Now 4ev \ Q1 ˆ 4f1v, and q 2 Q1, so if q 2 4ev, then we would have 
q 2 4f1v. Yet, p 2 4f1v, and S1 is a pebble set in Q1, and so q 62 4ev. � 

Lemma 20 Let P be a polygon and C a chamber of P . Let Q1, E2 and E3 be 
defined as in Construction ??. Let S1 be a pebble set in Q1 that contains p, and 
let D be any chamber of Q1 that contains a point of S1 − {p}. Then D is also 
a chamber of P . 

Proof. Suppose D is a chamber of Q1 that contains some q 2 S1 − {p}, and 
which is not a chamber of P . Then there is a chord of P that intersects D. Such 
a chord is clearly not a chord of Q1, and is thus of the form uv, where u is a 
vertex of Q1 and v is not. Of all such chords, let uv be closest to q. If q does not 
lie on uv, then there is an edge e 2 E2 [ E3 [ {e1} that is incident with v such 
that q 2 4eu. But then q lies in the fan of e, which contradicts Lemma ??. If, 
on the other hand, q lies on uv, then the fact that uv intersects f1 reveals that 
q 2 4f1u, which is impossible. Thus the chords that determine the chamber in 
P that contains q are also chords of Q1, and D is a chamber of P . � 

Theorem 21 The mapping ˇ : S(P, p) ! �3 S(Qi, p) defined above is a bi-i=1 
jection. 

Proof. First we show that ˇ is a function. If S 2 S(P, p), then clearly for 
1 � i � 3, S\Qi is a pebble set in Qi that contains p. Thus ˇ(S) 2 �3 S(Qi, p).i=1 
To show that ˇ is well defined, suppose S, T 2 S(P, p) are equivalent pebble sets. 
Then the chambers of P that contain the points of S are precisely those that 
contain the points of T . Let C be any such chamber, and suppose q 2 S \ C 
and r 2 T \C. Suppose also that C � Qi. Since every chamber of P is a subset 
of some chamber of Qi, the chamber in Qi that contains q also contains r, so 
that S \Qi and T \Qi are equivalent pebble sets for Qi. Since this is true for 
all 1 � i � 3, we have that S \Qi and T \Qi are equivalent pebble sets for all 
i. Thus ˇ is well defined. 

To show that ˇ is one-to-one, suppose that S, T 2 S(P, p) are two pebble sets 
such that S \Qi and T \Qi are equivalent pebble sets in all the Qi (1 � i � 3). 
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Let q 2 S be any point. Since S and T both contain p, we may assume that 
q 6= p. Since the Qi cover P , there exists some i such that p 2 Qi. Since S \Qi 

and T \Qi are equivalent pebble sets in Qi, then there exists a point r 2 T \Qi 

that lies in the same chamber of Qi as q. But by Lemma ??, the chamber of Qi 

that contains q is also a chamber of P . Thus q and r lie in the same chamber of 
P . Since q was chosen arbitrarily, we have that S and T are equivalent pebble 
sets in P . 

To show that ˇ is onto, let S1, S2, and S3 be, respectively, pebble sets in 
Q1, Q2, and Q3 that contain p. We show that S = S1 [ S2 [ S3 is a pebble set 
in P by applying Lemma ??. Let e be any edge and v any vertex of P . We 
may assume that v is an endpoint of an edge in E1, for an identical argument 
applies if v is an endpoint of an edge in E2 [E3. If e is an edge of Q1, then since 
S1 is a pebble set in Q1, 4ev contains precisely one point of S1. Furthermore, 
4ev cannot contain a point of S2. For the only way that 4ev intersects Q2 is 
if e = e3, in which case the facts that p 2 4e3f2 and that S2 is a pebble set 
in Q2 reveal that 4ev \Q2 contains no point of S2. By similar reasoning, 4ev 
contains no point of S3. 

Now if e is not an edge of Q1, then it is an edge in E2 [ E3 [ {e1}. First 
consider that e = e1. Then the interior of 4ev \ Q1 is a subset of 4f1v. But 
p 2 4f1v, and S1 is a pebble set in Q1. Thus 4ev contains no point of S1 −{p}. 
Furthermore, since p 2 4e1f2 and S2 is a pebble set in Q2, then 4ev contains 
no point of S2 − {p}. Similarly, since p 2 4e1f3 and S3 is a pebble set in Q3, 
then 4ev contains no point of S3 − {p}. Thus 4ev contains at most one point 
of S. 

Finally, consider that e 2 E2 [ E3. We may assume e 2 E2, for an identical 
argument will apply if e 2 E3. By Lemma ??, 4ev contains no point of S1. 
Since 4ev does not intersect Q3, then 4ev contains no point of S3. Finally, 
consider the quadrilateral determined by f2 and e. This quadrilateral contains 
precisely two points of S2, one of which is p. Since e 2/ ES(C), we have that 
p /2 4ev. Thus 4ev contains at most one point of S2. 

We therefore have that every triangle of the form 4ev contains at most one 
point of S, so that by Lemma ??, S is a pebble set in P . Thus ˇ is onto. � 

We are now ready to prove the converse of Theorem ??. If C is a chamber 
with support size three, and we let p be any point in C, then p is close to an 
edge in each of the Qi. Theorem ?? assures us that there are pebble sets in 
each of the Qi that contain p. By the proof of Theorem ??, the union of these 
pebble sets is a pebble set in the polygon. Thus we arrive at the following. 

Corollary 22 A chamber with support size three is viable. 

With the help of the next proposition, we can count the number of pebble 
sets that contain a point in a given chamber, where all other points lie in the 
periphery of the polygon. 

Proposition 23 Let C be a viable chamber in a polygon P , and let S be a 
pebble set in P that contains a point p 2 C. Then the S \ Qi are peripheral 
pebble sets in Qi if and only if all points of S − {p} lie in the periphery of P . 
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Proof. First suppose all the S \ Qi are peripheral pebble sets in the Qi. Now 
the only border triangles of Qi that are not also border triangles of P must be 
defined by fi and an edge of P incident with fi. Such a triangle contains p. 
Thus if q 2 S − {p}, q lies in a border triangle of some Qi that is also a border 
triangle of P . Conversely, if every point q 2 S − {p} lies in the periphery of P , 
then for any i, either q lies in the periphery of Qi, or it lies outside Qi. � 

By Proposition ??, the bijection in Theorem ?? can be restricted to a bi-
jection between pebble sets in P that contain a point in C and where all other 
points lie in the periphery, and ordered triples of peripheral pebble sets in the 
Qi that contain a point close to the edge fi. With Theorem ??, we now have a 
way to construct all pebble sets in P that have a point in C and where all other 
points lie in the periphery. The following corollary allows us to determine the 
number of such pebble sets. 

Corollary 24 Let C be a chamber of a polygon P such that |ES(C)| = 3. 
Define Ei and Qi as in Construction ??, and let ni be the number of distinct P3endpoints of the edges of Ei. Let D = d(Qi), where d(Qi) is defined asi=1 
in Corollary ??. Then the number of pebble sets in P containing p and with all 
other points in the periphery is 2n−6+D . 

Proof. Each Qi contains ni+2 vertices, and n1+n2+n3 = n. By Theorem ?? and 
2ni−2+d(Qi) = 2n−6+DCorollary ??, the number of such pebble sets is �3 . �i=1 

5 Finding Viable Chambers 

In this section we approach the task of finding the viable chambers of a polygon 
in two slightly di�erent ways. First, given a particular chamber in a polygon, 
we show that determining whether its support size is three is surprisingly easy. 
Second, given an arbitrary n-gon, we describe an algorithm for finding all viable 
chambers that is O(n3). This represents an improvement over checking every 
chamber, for as we will show, the number of chambers in an n-gon is O(n4). 

5.1 A second characterization of viability 

According to Proposition ??, only triangular chambers are viable. The converse, 
however, is not true in general. But if C is a triangular chamber, and the 
chords and edges that determine the boundary of C are incident with edges of 
the polygon in a particular way we will describe, then we can conclude that 
|ES(C)| = 3 and that therefore C is viable. 

One direction of claim 1 from the proof of Theorem ?? says that if either 
ek 2 ES(C) or ek−1 2 ES(C), then f 2 ES(C 0). Equivalently, if f 2/ ES(C 0), 
then neither ek nor ek−1 is in ES(C); and furthermore, by claim 2a in the 
proof of Proposition ??, every other edge of P is in ES(C) if and only if it is 
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in ES(C 0). The important point to be made here is that if f 2/ ES(C 0), then 
ES(C 0) = ES(C). 

We may apply this result inductively on a set of consecutive edges in a 
polygon to have the following. 

Lemma 25 Let E = {ei, ei+1, . . . ej} be any set of consecutive edges of a poly-
gon P , where 2 � |E| � n−2. Let g be the chord vivj+1, and C be any chamber 
of P that does not lie in the polygon determined by E and g. Let P 0 be the 
polygon determined by g and the edges of P not in E. Let C 0 be the chamber of 
P 0 that contains C. Finally, suppose that g 2/ ES(C 0). Then ES(C 0) = ES(C). 

Now we demonstrate how to determine if a triangular chamber has support 
size three. Let C be a triangular chamber in a polygon P , and suppose f is 
an edge or chord that determines part of the boundary of C. In the proof of 
Proposition ??, we noted that the two edges of P that are incident with f and 
lie on the same side of f as C are edges in ES(C). 

So consider all the edges of P with the property that they are incident with 
an edge or chord that bounds C and lie on the same side of the chord as C. Call 
this set of edges the boundary support of C, which we will denote BS(C). Then 
by the observation in the previous paragraph, we have that BS(C) � ES(C). 

Proposition 26 Suppose C is a triangular chamber in an n-gon P , and suppose 
that BS(C) contains precisely three edges. Then BS(C) = ES(C). 

Proof. Let {f1, f2, f3} be the chords that determine the boundary of C, and 
write BS(C) = {e1, e2, e3}, where fi is incident with ej and ek (i, j, k distinct). 
Let V be the set of endpoints of the fi. Note that 3 � |V | � 6. First consider 
that |V | � 5, so that at least two of the fi are incident. Now the intersections of 
pairs of the fi determine the vertices of C. We thus have that a vertex of P is 
also a vertex of C, so that C lies in the periphery. In this case, ES(C) contains 
precisely three edges, so that BS(C) = ES(C). 

We may assume, therefore, that |V | = 6. Let P 0 be the convex hull of BS(C). 
Since |V | = 6, we have that P 0 is a hexagon, and C is a chamber in the core of 
P 0 . (See Figure ??). Each fi is a chord of P , and the perimeter of P 0 consists 
of {e1, e2, e3, g1, g2, g3}, where the gi are chords of P joining ej and ek (i, j, and 
k all distinct). The perimeter of P 0 naturally partitions the edges of P into six 
subsets: {e1}, {e2}, {e3}, E1, E2, and E3, as illustrated in Figure ??. Note that 
the Ei are all nonempty. We show that no edge of the Ei is in the edge support 
of C. 

Let 1 � i � 3, and let Pi be the polygon formed from P by removing the 
edges of Ei and including gi. Now C is a chamber in both P and Pi. We claim 
gi 2/ ES(C) in Pi. If j =6 i, then C lies in the quadrilateral defined by ei and ej . 
Thus C lies in no triangle determined by gi and an endpoint of any edge in Ej , 
so that gi 2/ ES(C) (in Pi). Thus by Lemma ??, no edge in Ei is in ES(C) (in 
P ). Since this is true for 1 � i � 3, we have that ES(C) = {e1, e2, e3}. � 

If a chamber is not triangular, its boundary support must contain more than 
three edges. With this and Propositions ?? and ??, we have the following. 
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Theorem 27 A chamber is viable if and only if its boundary support contains 
precisely three edges. 

5.2 An algorithm for determining all viable chambers 

To determine all viable chambers of a given n-gon, one approach would be to 
check every chamber to see if satisfies the criterion of Theorem ??. For an n-
gon in general position (so that no three chords intersect at a single point), the � � � � 

n−1 n 1number of chambers is + . Therefore, any algorithm that checks every 2 4 
chamber for viability will generally run in O(n4) time. 

This can be improved in the following way. Select three edges of the n-gon, 
and denote them E = {ei, ej , ek}. In this subsection, we will describe a decision 
procedure for determining when E is the edge support for some chamber of P . 

Let P 0 be the convex hull of E. If P 0 is a quadrilateral or pentagon, then 
E is the edge support of a peripheral chamber of P , which is viable. If P 0 is 
a hexagon such that the chords that connect opposite vertices all meet at one 
point, then no chamber of P 0 (and therefore no chamber of P ) has E as its edge 
support (as can be seen by considering boundary support instead). 

If P 0 is a hexagon in general position, then P 0 contains a triangular chamber 
C in the core. If BS(C) = E, then C is a viable chamber of P 0 , as illustrated 
in Figure ??. Furthermore, C is also a viable chamber in P , as the following 
theorem demonstrates. For notational simplicity, we let {e1, e2, e3} represent 
any choice of three edges of the n-gon. 

Theorem 28 Let E = {e1, e2, e3} be any three edges of an n-gon P , and let P 0 

be the convex hull of E. Suppose P 0 is a hexagon in general position, so that it 
contains a triangular chamber C in the core. Finally, suppose that BS(C) = E. 
Then C is a viable chamber of P . 

Proof. Let {g1, g2, g3} be the other three edges of P 0 , and let E1, E2, and E3 

be the edge subsets of P as labeled in Figure ??. First we show that C is a 
chamber of P by supposing that D is a chamber of P that is a proper subset 
of C. Then there is a chord f of P that is not a chord of P 0 that intersects 
C. Clearly at least one endpoint of f is not a vertex of P 0 . Thus this endpoint 
would determine an edge of P in one of the Ei that is in BS(D), hence in ES(D) 
in P . But then by Lemma ??, gi 2 ES(C) in P 0 , which is false. Thus C is a 
chamber of P . 

Let P1 be the convex hull of E [ E1. By Lemma ??, since g1 2/ ES(C) in 
P 0 , then ES(C) in P1 is precisely the same as ES(C) in P 0 . Now let P2 be the 

1The number of chambers in P can be determined by considering the graph G whose 
vertices are the intersections of all the chords and edges of P , and whose edges are the edges 
of P and segments of the chords joining two points of intersection. We note that there is 
precisely one intersection of chords for every choice of four vertices of P , so that the number ` ´ nof vertices of G is n + 

4 . Every vertex of P has degree n − 1 and the remaining vertices 
of G have degree four. Since the sum of the degrees of the vertices of G is twice the number ` ´ ` ´ n nof edges, we have that G contains + 2 edges. Applying Euler’s formula to this planar 

2 4 ´ ´` ` n−1 ngraph, the number of chambers in P is therefore 
2 + 

4 . 
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convex hull of E [E1 [E2. Again by Lemma ??, since g2 2/ ES(C) in P1, then 
ES(C) in P2 is precisely the same as ES(C) in P1. Finally, since g3 2/ ES(C) in 
P2, applying Lemma ?? a third time reveals that ES(C) in P is precisely the 
same as ES(C) in P2. Thus in P , ES(C) = E and by Corollary ??, C is a viable 
chamber of P . � � � 

nSince the number of such edge triples is , any algorithm that enumerates 3 
all viable chambers of P using Theorem ?? will run in O(n3) time. 

Further Questions 

In this paper, we have made some progress in characterizing all pebble sets in a 
given polygon. First, we have a lower bound on the number of pebble sets, given 
by the n2n−5 peripheral pebble sets. This lower bound is actually achieved when 
there are no chambers outside the periphery whose support size is three—for 
instance, when the polygon is regular. 

Stronger still, a point can be in a pebble set if and only if the support size 
of its chamber is three. And given such a chamber, we can use the construction 
in section ?? to decompose the polygon into three subpolygons Q1, Q2 and Q3. 
Theorem ?? assures us that finding pebble sets in each of the Qi is equivalent to 
finding a pebble set in the original polygon. This suggests an inductive approach 
to characterizing pebble sets. This inductive approach is algorithmic, but leaves 
much to be desired. It seems ineÿcient, but worse, it does not seem to capture 
the entire structure of the problem. The set of chambers whose support sizes 
are all three does seem to relate to the corresponding sets for the Qi, and it 
might be possible to use this fact to extract a more refined object that makes 
counting pebble sets easier. 

For instance, we showed that if p lies in a viable chamber in the core, then 
we can easily count the number of pebble sets whose only core point is p. What 
is the corresponding description for two core points? Or more generally? 

Beyond this main question, we could seek solutions to related problems. 
First, the statement of the problem by Lukácz and András specified that there 
should be n−2 points in the required set and that a point on the boundary of a 
triangle does not count as being in that triangle. We showed in Proposition ?? 
that as a result, points in a pebble set may not lie on chords of the polygon. But 
if we allow more points, or if we change how we count points on the boundary 
of a triangle, this proposition no longer holds. For instance, if the polygon is 
a square, we can augment any pebble set by adding a point in the center of 
the square, which does not count toward any total since it does not lie in any 
triangle. On the other hand, if we decide that points on the boundary of the 
triangle count as lying in the triangle (so that the triangles are closed), we could 
have a set with one point (the center of the square) with the required property. 
If we count points on the boundary of a triangle as providing 1/2 a point to that 
triangle, we could have sets with two points, both straddling the same chord 
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but from opposite sides of the center. The structure of these sets seems less 
clear. 

Another obvious generalization would be to consider polytopes in higher 
dimensions, as in [?], replacing the notion of triangle with that of simplices. 
But there are many cases where the problem analogous to the polygon ques-
tion has no solution. For instance, in three dimensions, consider the triangular 
bipyramid—that is, the union of two tetrahedra that share a face. This has 
a triangulation into two simplices (the two tetrahedra used to define it), and 
another triangulation into three simplices, where the simplices all surround the 
edge between the apexes of the tetrahedra. As a result, if each tetrahedron 
contains a point, then we are left with requiring a set with two points and three 
points simultaneously, which is impossible. Thus, the structure of this problem 
seems very di�erent. 

One way around this is to insist that every simplex has at most one point, 
which is precisely the definition of pebble set in [?]. It is likely that any gener-
alization to higher dimensions should use this notion. 

Another generalization in the plane would be to insist that every triangle 
contain k points, for a given integer k � 1. Some preliminary investigations 
have indicated that this problem has some interesting structure, though this 
problem seems to have a character very di erent from the problem posed in this 
paper. 
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